| GENERAL DATA | |---| | Electrical: | | Filamentary Cathode, Coated: Voltage | | Mechanical: | | Terminal Connections: | | F ₁ - Filament (Insulated) F ₂ - Filament, Cathode Shield, Shell (Anode Return) Cap - Anode | | Mounting Position Vertical with filament end down | | Maximum Overall Length (Including flexible leads) | | Temperature Control: | | Heating—When the ambient temperature is so low that the normal rise of condensed—mercury temperature above the ambient temperature will not bring the condensed—mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat—conserving enclosure or auxiliary heater will be required. | | Cooling—When the operating conditions are such that the maximum value of the operating condensed—mercury temperature range is exceeded, provision should be made for forced—air cooling sufficient to prevent exceeding the maximum value. | | Temperature Rise of Condensed-Mercury to Equilibrium Above Ambient Temperature (Approx.):* No load | | with filament volts = 4.75 and no heat-conserving enclosure. | | | | → Indicates a change. | #### HALF-WAVE RECTIFIER Maximum Ratings, Absolute Values: For supply frequency of 60 cps #### Operating Condensed-Mercury Temperature Range | | 25° to 60°C | 30° to 40°C | | |---------------------------------|-------------|-------------|-------| | PEAK INVERSE
ANODE VOLTAGE | 10000 max. | 22000 max. | volts | | ANODE CURRENT: Peak | 40 max. | 40 max. | атр | | Average** | 10 max. | 10 max. | | | Fault, for dura-
tion of 0.2 | | | | | second max | 400 max. | 400 max. | amp | #### CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note | | | Hore | mun. | max. | | |---|--|------|------|------|-------| | | Filament Current | 1 | _ | 33 | amp | | ı | Critical Anode Voltage | 2 | - | 100 | volts | | Į | Critical Anode Voltage
Peak Tube Voltage Drop | 3 | | 25 | volts | Note 1: With 5 volts rms on filament. Note 2: With 4.75 volts rms on filament, and condensed-mercury temperature at $25^{\circ}\mathrm{C}$, or above. Note 3: With 5 volts rms on filament, condensed-mercury temperature of 35° ± 5°C, peak anode current of 100 amperes provided by half-cycle pulse from a 60-cps sine wave and recurring approximately once a second. Tube drop is measured by an oscilloscope connected between anode and center tap of filament transformer. #### OPERATING CONSIDERATIONS X-Ray Warning. X-rays are produced when the 857-B is operated with a peak inverse voltage above 16000 volts (absolute value). These rays can constitute a health hazard unless the tube is adequately shielded for X-ray radiation. Although relatively simple shielding should prove adequate, make sure that it provides the required protection to the operator. Shields and rf filter circuits should be provided for the 857-B if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes. ** Averaged over any period of 30 seconds maximum. - Indicates a change. JULY 1, 1955 65.16 ## HALF-WAVE MERCURY-VAPOR RECTIFIER For Circuit Figures, see Front of this Section | 101 011001 | For Circuit Figures, see Front of this Section | | | | | | | |---|--|---------------------------------------|---|---|--|--|--| | CIRCUIT | MAX.
TRAMS.
SEC.
VOLTS
(RMS) | APPROX. DC OUTPUT VOLTS TO FILTER Eav | MAX.
DC
OUTPUT
AMPERES
!av | MAX. DC OUTPUT KW TO FILTER Pdc | | | | | Fig.
Half-Wave
Single-Phase
In-Phase Operation | 15400 [□]
7000 ≜ | 7000
3200 | 10
10 | 70
32 | | | | | Fig. 2 Full-Wave Single-Phase In-Phase Operation | 7700 [⊡]
3500 ▲ | 7000
3200 | 20
20 | 140
64 | | | | | Fig. 3
Series
Single-Phase
In-Phase Operation | 15400 [□]
7000 ▲ | 14000
6400 | 20
20 | 280
128 | | | | | Fig. 4 Half-Wave Three-Phase In-Phase Operation | 8900 [□]
4000 ▲ | 10500
4800 | 30
30 | 315
144 | | | | | Fig. 5 Parallel Three-Phase Quadrature Operation | 8900 [□]
4000 ▲ | 10500
4800 | 60
60 | 630
288 | | | | | Fig. 6
Series
Three-Phase
Quadrature Operation | 8900 [□]
4000 [♠] | 21000
9600 | 30
30 | 630
288 | | | | | Fig. 7 Half-Wave Four-Phase Quadrature Operation | 7700 [□]
3500 [▲] | 10100
4600 | Resis- Induc-
tive tive
Load Load
36 40
36 40 | Resis- Induc-
tive tive
Load Load
364 404
166 184 | | | | | Fig. 8 Half-Wave Six-Phase Quadrature Operation | 7700 [□]
3500 △ | 10500
4800 | Resis- Induc-
tive tive
Load Load
38 40
38 40 | Resis- Induc-
tive tive
Load Load
399 420
182 192 | | | | For maximum peak inverse anode voltage of 22000 volts and maximum average current of 10 amperes. JULY 1, 1955 For maximum peak inverse anode voltage of 10000 volts and maximum average current of 10 amperes. JULY 1, 1955 857.8 JULY 1, 1955 #### RATE OF RISE OF COND.-MERCURY TEMPERATURE APRIL 16,1951 TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-7639