RADIO ENGINEERING PRINCIPLES

BY HENRI LAUER, B. S.

AND

HARRY L. BROWN, B. E. E.

SECOND EDITION

McGRAW-HILL BOOK COMPANY, Inc. NEW YORK: 370 SEVENTH AVENUE LONDON: 6 & 8 BOUVERIE ST., E. C. 4 1928 COPYRIGHT, 1919, 1928, BY THE McGraw-Hill Book Company, Inc.

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE TO SECOND EDITION

This second edition of "Radio Engineering Principles" is a revision and amplification of the first edition, which was written after the conclusion in 1919 of the authors' radio work as Second Lieutenant and Captain, respectively, in the Signal Corps, U. S. A.

The new edition follows the same general plan and purpose as the first, but the development of the art since the World War, particularly with respect to the science and practice surrounding the three-electrode vacuum tube, has made considerable additions desirable.

The book is intended to serve as a general textbook on radio. It is devoted in large part to a study of the characteristics and use of the three-electrode vacuum tube in radio telegraphy and radio telephony, since it is around this device that the present and future of the science seem mainly to center. But the principles involved in the older forms of radio apparatus are also treated with sufficient fulness to round out the student's information and to cover all the essential principles of wireless communication.

In the detail development of the principles involved, the electron theory is made use of frequently, as it often gives a clearer conception of what takes place under certain conditions. Mechanical analogies are avoided. Mathematics is resorted to only to indicate the applications in the problems of design, or the relations, in concise form, existing among the various quantities of a radio circuit. The description of any specific apparatus is purposely avoided, with the object in mind of devoting the entire space of the book to the principles involved, though the general means of utilizing these principles in practical work are of course given. With the principles understood, it is a simple matter to apply them to any specific radio apparatus.

THE AUTHORS.

December, 1927.

POSTSCRIPT

As this Edition is about to go to press word has come to me of the sudden death of my co-author and friend Harry L. Brown. His loss is keenly felt by his associates in many varied fields of the electrical industry to which his activities were devoted. The preparation of the present edition of our book had been the object of careful attention on his part, and no later than a few days ago did he put the final touches to the new Preface of the book.

In remembrance of his kind cooperation and as a tribute to his memory, I most respectfully dedicate this second edition to his widow, Mrs. Harry L. Brown, with the expression of my sincere grief and deep sympathy.

HENRI LAUER.

November 11, 1927.

CONTENTS

Pagi
Preface to Second Edition
CHAPTER I. UNDERLYING ELECTRICAL THEORY
Electricity and Matter
Coulomb's Law
Field Intensity.
Potential
Electrostatic Field
Dielectric Constant
Electrostatic Induction
Condenser Capacitance
Energy Stored in a Condenser
Field of a Uniformly Moving Charge
Electric Current Intensity
Resistance
Energy Lost through Resistance
Inductance
Magnetic Energy
Electromagnetic Induction
Mutual Inductance
Electromagnetic Radiation of Energy
Underlying Principles of Radio Communication
CHAPTER II. PROPERTIES OF OSCILLATORY CIRCUITS
Forced Oscillations
Capacitive Reactance
Inductive Reactance
Impedance
Series Resonance
Parallel Resonance
Resonance in Coupled Circuits
Free Oscillations
Oscillatory Discharge of a Condenser
Mathematical Interpretation of the Oscillatory Condenser
Discharge
Free Oscillations of Loosely Coupled Circuits
Free Oscillations of Closely Coupled Circuits
Wavemeters
CHAPTER III. ANTENNA SYSTEMS AND RADIATION
Closed and Open Oscillators
Wave Length. Wave Front

CONTENTS

Antenna Resistance	62
Antenna Constants and Types	63
Receiving Antennae	65
Directional Characteristics.	00
Long and Medium Waves	
Short Waves	73
Loop Antennae	
Constants of Loop Antennae	80
Direction Finding	82
Unidirectional Goniometer	
Loop Unbalance	
Aircraft Radio Compass	88
CHAPTER IV. DAMPED-WAVE RADIO TELEGRAPHY	
Damped-wave Radio Transmitting Circuits	92
Typical Method of Operation	97
Damped-wave Radio Receiving Circuits	98
CHAPTER V. UNDAMPED OR CONTINUOUS-WAVE RADIO TELEGI	RAPHY
Undamped-wave Transmitting Circuits and Methods	104
High-frequency Alternator	
Goldschmidt Alternator	105
Inductor Alternators	108
The Oscillating Arc.	113
Continuous-wave Radio Telegraph Transmitting Circuits	. 117
High-frequency Alternator Circuits	117
Oscillating-are Circuits	118
Signalling Speed	119
Continuous-wave Reception	
Heterodyne Reception.	
Advente and of Wetersdam Decemtion	195
Advantages of Heterodyne Reception	120
CHAPTER VI. THE THREE-ELECTRODE VACUUM TUBE	
General Properties	128
Electron Emission by Hot Bodies	
The Two-electrode Vacuum Tube	
Effect of Gas on the Plate Current	
The Three-electrode Vacuum Tube	
Characteristic Curves	. 134
Quantitative Expression of Vacuum-tube Properties	. 136
Amplification Factor	
Internal Resistance	
Differential Resistance	
Mutual Conductance	
Measurement of Vacuum-tube Constants	142
Amplification Factor	142
Differential Internal Plate Resistance	149
Mutual Conductance	
Various Types of Vacuum-tube Constructions	144

CONTENTS

CHAPTER VII. THE THREE-ELECTRODE VACUUM TUBE AS AN AMPLI	
	PAGE
Voltage Amplification	$\frac{152}{154}$
Imput Impedance	154
Cascade Amplification	154
Resistance-capacity Coupled Amplifiers	156
Impedance-capacity Coupled Amplifiers	
Transformer Coupled Amplifiers	
Direct-current Amplifiers	
Reflex Amplification	
Performance of Vacuum-tube Amplifiers	
Push-pull Amplifier	
Mathematical Theory of the Push-pull Amplifier and Fre-	
quency Doubler	173
quency Doublet	110
CHAPTER VIII. THE THREE-ELECTRODE VACUUM-TUBE OSCILLATOR	R
Physical Explanation	175
Dynamic Characteristic	177
Effects of Coupling on the Oscillation Amplitude	179
Quantitative Theory of Oscillation Generation	
Effects of Grid Voltage on Oscillation	184
Efficiency of the Vacuum-tube Oscillator	185
Typical Oscillatory Circuits	187
Oscillation Generation and Neutralization in Cascade Ampli-	
fiers	192
Special Short-wave Oscillator Circuits	196
Radio Telegraph Transmitting Circuits	
High-power Sets	198
Keying	199
Low-power Sets	200
Multivibrator and Negative-resistance Circuits	208
Multivibrator	208
Negative Resistance Circuits	212
CHAPTER IX. THE THREE ELECTRODE VACUUM-TUBE RECEIVE	R.
The Simple Three-electrode Vacuum-tube Detector	
Two-electrode Vacuum-tube Detector	215
Three-electrode Vacuum-tube Detector. Grid Detection	216
Plate Rectification	222
The Non-oscillating Regenerative Detector	225
Simple Regenerative Amplification	225
Superregenerative Amplification	227
The Oscillating Three-electrode Vacuum-tube Receiver	. 235
Autodyne Receiver	
Automatic Synchronization	237
Multiple-circuit Regenerative and Autodyne Receiver	247
Vacuum-tube Heterodyne Receivers	240
Superheterodyne Receivers.	

CHAPTER X. RADIO TELEPHONY

	PAGE
General Underlying Principles	258
The Modulated High-frequency Current	259
Ordinary Modulating Methods	262
Ferromagnetic or Detuning Modulation Methods	262
Vacuum-tube Modulation Methods	264
Ordinary Radio Telephone Reception Methods	272
Single-frequency Band Radio Telephony	277
Mathematical Theory of the Balanced Modulator	282
Note on the Modulator-type Heterodyne Receiver	284
CHAPTER XI. MISCELLANEOUS APPLICATIONS	
Airplane Radio Apparatus	286
Submarine Radio Apparatus	
Use of the Vacuum Tube for Sustaining Mechanical Oscillations	
Piezo-electric Resonators and Oscillators	, 293
Index	297